Future upcoming technologies and what audit needs to address

Dr R.I MacKay The Christie NHS Foundation Trust

History of audit

- Absolute dose
 - Simple phantom standard dose measurement
- Point doses in beams
 - Phantoms of relatively simple geometry
 - Several points in beam
- Treatment simulation
 - Point doses
 - Semi anatomical phantom
 - Realistic treatment technique
 - Scan Plan Treat
- IMRT
 - Absolute dose and dose distribution
 - More complex treatment protocol
- Rotational Audit
 - Challenging geometry
 - Test of planning system and dose delivery
- Advanced techniques
 - SABR

Figure 2. The field arrangement and a typical dose distribution for the planned irradiation showing the positions of the five measurement points.

Advanced Radiotherapy

Modality	Small field	High Intensity Modulation	Adaptive Radiotherapy	Imaging	High dose rate	Gating/Trac king
Protons		\checkmark	\checkmark	\checkmark		?
Flattening Filter Free		\checkmark	\checkmark	\checkmark	\checkmark	
VMAT		\checkmark	\checkmark	\checkmark	\checkmark	
Cyber Knife	\checkmark	\checkmark		\checkmark		\checkmark
Tomotherapy		\checkmark	\checkmark	\checkmark		
SRS Linac	\checkmark			\checkmark		
MR linac		\checkmark	\checkmark	\checkmark		\checkmark

Challenges in new technology

- Technology is making dose delivery more diverse
- New technology is a combination of advanced delivery techniques
- Audit is traditionally quite rigid
 - We design the audit for the technique
- Does this fit our model of regional audit
 - Collaborative approaches between those with similar technology

Marvin: Overview

<u>M</u>odel
 <u>A</u>natomy for
 <u>R</u>adiotherapy
 <u>V</u>erification and Audit
 <u>I</u>n the Head and
 <u>N</u>eck

- Average geometry from patient CT scans (4 male, 4 female):
 - Body
 - Mandible
 - Sinuses
 - Spinal cord (location only)
- Mandible and cavity can be swapped for ABS versions to make a homogeneous phantom

Marvin: Detector module

- Cylindrical detector module
 - Location maximises coverage of typical PTV locations and spinal cord
 - Can be designed for any type of detector (film, gel, diode array...)
- Prototype module designed for pinpoint ionisation chamber
 - Absolute dose measurements
- Simple chamber positioning system
 - 15 chamber holes from centre to edge
 - Module rotates to 12 fixed positions
 - Depth of chamber set using spacer rods
 Chamber can be positioned almost anywhere within the cylinder

Chamber positioning code

- Need to be able to position chamber:
 - Within the PTV or spinal cord
 - Avoid steep dose gradients
- Detector module has >1500 possible chamber positions
 - Selecting suitable points manually can be difficult
- Software automates point selection
 - PTV located as a percentage of the max dose point (typically 90 or 95 %)
 - Cord position known from average cord geometry.
 - Chamber positions lying within these regions and with low dose gradients identified
 - Code currently based on Pinnacle file format

Example audit results

Delineation variation: CT versus CT + PET

•Steenbakkers et al, IJROBP 2005 The Christie

Potential uses of PET in RT planning

1. Improved diagnosis and staging of disease

- Improved sensitivity and specificity of FDG-PET
- Can detect distant metastasis and advanced disease

70	Sensitivity	% 5	pecificity
CT	18F-FDG PET	CT	18F-FDG PET
36-86	50-96	56-100	88-100
45	80-90	85	85-100
57-73*	75–91	83-100*	92-100
11-87	30-78	28-99	86-98
	CT 36-86 45 57-73* 11-87	CT ¹⁸ F-FDG PET 36-86 50-96 45 80-90 57-73* 75-91 11-87 30-78	CT ¹⁸ F-FDG PET CT 36-86 50-96 56-100 45 80-90 85 57-73* 75-91 83-100* 11-87 30-78 28-99

TABLE 1 Comparison of CT and ¹⁸F-FDG PET for Staging of Lymph Node Involvement

- Gregoire et al, J Nuc Med 48(1)S, 2007

Potential uses of PET in RT planning

2. Tumour delineation

Potential uses of PET in RT planning

3. Dose modulation

•Targeted conformal high dose

Isotoxic dose escalation

•Improved local control with no increase in toxicity?

4. Prediction / monitoring treatment response

Transfer of Information

•www.ncripet.org.uk

Site Approval

PET Centre:			
EET CEUTE	DET	Control	
		L PUILE	

Scanner Manufacturer and Model: Siemens Biograph TrueV6

WMIC

LP

06/04/2011

Analysis performed by:

Date of Phantom Analysis:

Qualitative Analysis:

Image Quality	Acceptable Not acc		eptable
PET/CT alignment on core centre reporting system	Acceptable	Not acceptable	
Comments	analysed on Hermes Gold 3 hybrid viewer.		rid
Sphere activity concentration at scan start time:	21.60 k		kBq/ml
Background activity concentration at scan start time:	4.45 H		kBq/ml

	Activity Concentration			
	Measured (M)	Actual (A)	Ratio	
Sphere diameter (mm)	kBq/ml	kBq/ml	M/A	
37	21.72	21.60	1.01	
28	22.88	21.60	1.06	
22	22.00	21.60	1.02	
17	18.43	21.60	0.85	
13	15.36	21.60	0.71	
10	8.05	21.60	0.37	
Background	4.03	4.45	0.90	

A recovery curve should be generated from the tabulated data:

Average SUV for a large ROI positioned over the background: 0.91 (1±0.1)

Recovery Curve: Acceptable Not acceptable

 Author: LPike
 Version: 3
 Date: 18/06/2010
 Page 1 of 2

 This document is uncontrolled once printed. Please check check in public_library/multicentretrials/Site Accreditation/AA_MASTER FORMS for the most up to date version
 Site

Author: LPike Version: 3 Date: 18/06/2010 Page 2 of 2							
This document is uncontrolled once printed. Please check check in public_library\multicentretrials\Site							
Accreditation\AA MASTER FORMS for the most up to date version							

Protons

- Uncertainties in proton therapy are greater
 - Uncertainty in proton stopping power
 - Inhomogeneities
 - Set up uncertainties have a greater effect
 - Changes in patient anatomy
- Dose delivery for scanned beams is highly intensity modulated using very small delivery fields
 Motion is a well known problem in scanning proton therapy
- Dose delivery for IMPT is not in itself robust
- Require dosimetry for protons at same level of photons

Audit for proton therapy

Validation (4D dosimetry)

csem • Introducing 'Oscar' – a 4D, anthropomorphic phantom

•Zakova et al, P142, PTCOG 52

The Christie NHS

Validation (4D dosimetry)4D CT of 'Oscar'

F Lucy,Lucy CTL121019 CTLucy CTL12001 RES/SHADE/SURF **RES/8BIT/SHADE/SURF** RespLow 1.5 B30s 75% In (75% 12BpM) PSI Strahlenmedizin RespLow 2.0 B30s 6% In (6% 10BpM) PSI Strahlenmedizin Sensation Open Sensation Open. 19-Oct-2012 09:32:56 19-Jun-2012 14:33:11 CT GT 0.0 GT 0.0 kV 120 kV 120 mA 40 mA 32 LD VX 1.09x1.09x1.50 LD VX 0.93x0.93x0.93 -dem LD 361x361x193 [12 bit] LD 323x323x240 [8 bit] SL 2 SL 1.5 SP 2 SP 1.5 B 94 85 PX 0.59 B 100 W 239 PX 0.77 156 512x512x193 [12 bit] 512x512x111 [12 bit] O 52 С 198 264 Н

•Zakova et al, P142, PTCOG 52

csem

Validation (4D dosimetry)

• Oscar' has been irradiated

csem

Where will it end?

- Dosimetric audit is a powerful tool and has served radiotherapy well
- Treatment techniques become more diverse as technology progresses and audit must become more flexible
- Greater collaboration between users of particular delivery systems
- Need to extend the audit process to include additional information that will increasingly affect how we deliver radiotherapy
 - Particularly functional imaging
- Require dosimetry for protons at same level of photons.
 - New tools for audit required

