

Rhod:- An Anthropomorphic phantom for end-to-end SRS audits

Andrew Willett Medical Physics Trainee Clatterbridge Cancer Centre

What to Audit?

The two critical aspects of single fraction Stereotactic Radiosurgery (SRS) are positioning and dosimetric accuracy. The purpose of an SRS audit was to verify:

- Patient set-up how well do our positioning systems work?
- Dose delivery how accurate is our isocentre dose?

We needed a new phantom, capable of measuring both.

The Phantom

Bespoke anthropomorphic phantom – Dental phantom with modifications for SRS measurements, known locally as "Rhod"

Phantom Anatomy

Realistic anatomy – brain, bone, spinal cord, vertebral disks and soft tissue

Made of proprietary epoxy materials – linear attenuations within 1% of actual (50 keV to 25 MeV)

The Phantom

Inserts – holder for stack of film, insert to hold a Pin-point ionisation chamber and an insert to hold TLDs.

Pin-point insert

Film insert

TLD insert

Positional Audit

Phantom used to check positioning accuracy. Having a phantom with complete bony anatomy allows positioning using the same imaging system as the patient.

End-to-end audit

- Phantom in same immobilisation system as patient
- Scanned and planned using clinical protocol
- Positioned on set, imaged and repositioned according to clinical protocol

Positional Audit

- Rhod has a chamber shaped insert with a 3 mm ball bearing that be used as the treatment isocentre
- Visible on both planning CT and MV portal images
- Phantom positioned using SRS localisation system, any moves suggested by image guidance are applied
- MV images taken at 0 and 90 degrees. Distance from centre of ball-bearing to centre of field provides a measure of positional accuracy

Position Audit - Results

- IQWorks used to calculate differences between ball-bearing position and centre of field.
- Accuracy was improved when using image guidance and phantom bonv anatomv

Dose Audit

Phantom was used for dose measurements at two centres (CCC and Royal Preston Hospital)

End-to-end audit

- Phantom in same immobilisation system as patient
- Scanned and planned using clinical protocol
- Positioned on set, imaged and repositioned according to clinical protocol
- Treatment plan delivered and compared to plan

Immobilisation and Simulation

Phantom was immobilised and CT scanned as if a patient at each centre

CCC – Brainlab frameless system

RPH – Fraxion system

Planning

Planned – using dynamic conformal arcs (CCC)

• Field size range 1.5-2 cm equivalent square

iPlan (Brainlab)

Planning

Patient treatment transferred onto phantom – multiple fixed fields (standard at RPH)

• Field size range 3-4 cm equivalent square

Calibration

 Intercomparisons between Pin-point chamber and field instruments – allows dose comparison with plans

- Performed isocentrically 95 cm SSD 5 cm deep
- Substitution method used in solid water (WT1)
- Field size of 5 x 5 cm used for calibration (10 x 10 cm factor also measured)

Results

All measurements within 2% of planning system predicted doses across both centres

RPH			
<u>Field</u>	Measured dose	Predicted dose	<u>Difference (%)</u>
	<u>(cGy)</u>	<u>(cGy)</u>	
1	246.63	247.2	0.23%
2	443.48	437.9	-1.26%
3	365.69	365.5	-0.05%
4	153.14	151.5	-1.07%
5	403.99	399.3	-1.16%
<u>Total</u>	1612.93	1601.4	-0.72%
CCC			
<u>Field</u>	Measured dose	Predicted dose	<u>Difference (%)</u>
	<u>(cGy)</u>	<u>(cGy)</u>	
Arc 1	247.19	245	-0.89%
Arc 2	253.98	258	1.58%
Arc 3	255.40	258	1.02%
Arc 4	241.80	238	-1.57%
<u>Total</u>	998.37	999	0.06%

Phantom/Method Improvements

- Uncertainty as to what is the best detector to use for small field measurements Pin-point not suitable for smaller (<1 cm sq) fields
- Gafchromic film or stereotactic diode?
- Additional difficulty in ensuring EBT3 film remains perpendicular to the treatment couch – most treatment planning systems cannot calculate oblique dose planes
- NPL Alanine Possible detector for the audit?
- Phantom can be immobilised in Brainlab Fixed Frame but must also be usable with other fixed frame systems

Logistical Improvements

- Combine positional and dosimetric audit in the same visit
- Clear protocol guide to setup/preparation sent with phantom in advance of visit.
- Immobilisation, scanning and planning can then be done entirely by audited centre prior to visit

Conclusion

- Anatomy in the phantom worked well set-up was straight forward according to clinical protocol
- Phantom density appears suitable evidenced by good results for larger fields (in early testing) and small fields
- The phantom can be therefore be used for dosimetric and positional audit
- Still room for improvement of both the phantom and protocol

Acknowledgements

Computerised Image Reference Systems (CIRS)

Martyn Gilmore – CCC Alison Scott – CCC

Mark Ramtohul – RPH Colin Jennings - RPH

